Mobile Marketing for Customer Relationship Management


A recent IBM technology trends survey indicated that mobile devices could increase the productivities and efficiencies of organisations. This study showed that mobile software was the second most “in demand” area for research and development. In addition, Gartner BI Hype Cycle (2012) also anticipated that mobile analytics was one of the latest technologies that may potentially disrupt the business intelligence market . At the same time, the market for mobile advertising is escalating at a very fast pace. Interestingly, eMarketer (2012) had predicted that mobile advertising shall experience a surge from an estimated $2.6 billion in 2012 to more than $10.8 billion in 2016. Evidently, there are niche areas for professional growth, particularly in this specialised field; as more and more individuals are increasingly creating new applications for mobile operating systems.

Recent advances in mobile communication and geo-positioning technologies have presented marketers with a new way how to target consumers based on their location. Location-targeted mobile advertising involves the provision of ad messages to cellular subscribers based on their geographic locations. This digital technology allows marketers to deliver ads and coupons that are customised to individual consumers’ tastes, geographic location and time of day. Given the ubiquity of mobile devices, location-targeted mobile advertising seems to offer tremendous marketing benefits.

In addition, many businesses are commonly utilising applications, including browser cookies that track consumers through their mobile devices as they move out and about. Once these users leave these sites, the products or services that they had viewed online will be shown to them again in advertisements, across different websites. Hence, businesses are using browsing session data combined with the consumers’ purchase history to deliver “suitable” items that consumers like. Therefore, savvy brands are becoming increasingly proficient in personalising their offerings as they collect, classify and use large data volumes on their consumers’ behaviours. As more consumers carry smartphones with them, they are (or may be) receiving compelling offers that instantaneously pop up on their mobile devices.

For instance, consumers are continuously using social networks and indicating their geo location as they use mobile apps. This same data can be used to identify where people tend to gather — information that could be useful in predicting real estate prices et cetera. This information is valuable to brands as they seek to improve their consumer engagement and marketing efforts. Businesses are using mobile devices and networks to capture important consumer data. Smart phones and tablets that are wifi-enabled interact with networks and convey information to network providers and ISPs. This year, more brands shall be using mobile devices and networks as a sort of sensor data – to acquire relevant information on their consumers’ digital behaviours and physical movements. These businesses have become increasingly interactive through the proliferation of near-field communication (NFC). Basically, embedded chips in the customers’ mobile phones are exchanging data with retailers’ items possessing the NFC tags. It is envisaged that mobile wallet transactions using NFC technologies are expected to reach $110 billion, by the year 2017. The latest Android and Microsoft smartphones have already include these NFC capabilities. Moreover, a recent patent application by Apple has revealed its plans to include NFC capabilities in their next products. This will inevitably lead to an increase in the use of mobile wallets (GSMA, 2015). Undoubtedly, the growth of such data-driven, digital technologies is adding value to customer-centric marketing. Therefore, analytics can enable businesses to provide a deeper personalisation of content and offers to specific customers.

Apparently, there are promising revenue streams in the mobile app market . Both Apple and Android are offering paid or free ad-supported apps in many categories. There are also companies that have developed apps for business intelligence. For example, enterprise / industry-specific apps, e-commerce apps and social apps. Evidently, the lightweight programming models of the current web services (e.g., HTML, XML, CSS, Ajax, Flash, J2E) as well as the maturing mobile development platforms such as Android and iOS have also contributed to the rapid proliferation of mobile applications (Chen et al., 2012). Moreover, researchers are increasingly exploring mobile sensing apps that are location-aware and activity-sensitive.

Possible future research avenues include mobile social innovation for m-learning; (Sharples, Taylor and Vavoula, 2010; Motiwalla, 2007), mobile social networking and crowd-sourcing (Lane et al., 2010), mobile visualisation (Corchado and Herrero, 2011), personalisation and behavioural modelling for mobile apps in gamification (Ha et al., 2007), mobile advertising and social media marketing (Bart et al., 2014; Yang et al., 2013). Google ’s (2015) current projects include gesture and touch interaction; activity-based and context-aware computing; recommendation of social and activity streams; analytics of social media engagements, and end-user programming (Dai, Rzeszotarski, Paritosh and Chi, 2015;  Fowler, Partridge, Chelba, Bi, Ouyang and Zhai, 2015; Zhong, Weber, Burkhardt, Weaver and Bigham, 2015; Brzozowski, Adams and Chi, 2015).


Bart, Y., Stephen, A. T., & Sarvary, M. (2014). Which products are best suited to mobile advertising? A field study of mobile display advertising effects on consumer attitudes and intentions. Journal of Marketing Research, 51(3), 270-285.

Brzozowski, M. J., Adams, P., & Chi, E. H. (2015, April). Google+ Communities as Plazas and Topic Boards. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 3779-3788). ACM. Retrieved May 22nd, 2015, from

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS quarterly, 36(4), 1165-1188.

Corchado, E., & Herrero, Á. (2011). Neural visualization of network traffic data for intrusion detection. Applied Soft Computing, 11(2), 2042-2056.

Dai, P., Rzeszotarski, J. M., Paritosh, P., & Chi, E. H. (2015). And Now for Something Completely Different: Improving Crowdsourcing Workflows with Micro-Diversions. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 628-638). ACM. Retrieved May 17th, 2015, from

eMarketer (2012). eMarketer in the News: June 1, 2012 Retrieved January 28th, 2015, from

Fowler, A., Partridge, K., Chelba, C., Bi, X., Ouyang, T., & Zhai, S. (2015, April). Effects of Language Modeling and its Personalization on Touchscreen Typing Performance. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 649-658). ACM. Retrieved May15th, 2015, from

Gartner (2012). Big Data Drives Rapid Changes in Infrastructure and $232 Billion in IT Spending Through 2016. Retrieved January 20th, 2015, from

Google (2015). Human-Computer Interaction and Visualization Research at Google. Retrieved May 20th, 2015, from

Ha, I., Yoon, Y., & Choi, M. (2007). Determinants of adoption of mobile games under mobile broadband wireless access environment. Information & Management, 44(3), 276-286.

IBM (2012) Tech Trends Report. Fast track to the future. Retrieved May15th, 2015, from

Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., & Campbell, A. T. (2010). A survey of mobile phone sensing. Communications Magazine, IEEE, 48(9), 140-150.

Motiwalla, L. F. (2007). Mobile learning: A framework and evaluation. Computers & Education, 49(3), 581-596.

Sharples, M., Taylor, J., & Vavoula, G. (2010). A theory of learning for the mobile age. In Medienbildung in neuen Kulturräumen (pp. 87-99). VS Verlag für Sozialwissenschaften.

Yang, B., Kim, Y., & Yoo, C. (2013). The integrated mobile advertising model: The effects of technology-and emotion-based evaluations. Journal of Business Research, 66(9), 1345-1352.

Zhong, Y., Weber, A., Burkhardt, C., Weaver, P., & Bigham, J. P. (2015). Enhancing Android accessibility for users with hand tremor by reducing fine pointing and steady tapping.

Current charges on mobile prepaid to continue for six months


KUALA LUMPUR, May 16, 2015:

The Malaysian Communications and Multimedia Commission (MCMC) and the Royal Malaysian Customs will ensure the imposition of the Goods and Services Tax (GST) based on the use of prepaid mobile services be implemented within six months.

MCMC chairman Datuk Seri Dr Halim Shafie said MCMC and the Customs would also ensure that all telecommunication companies would comply with the government directive to implement the rule decided at a cabinet meeting recently.

“In addition, auditing will also be conducted to ensure the accuracy of the GST deduction based on the value of the credit that has been used,” he said in a statement here today.

On Wednesday Communication and Multimedia Minister Datuk Seri Ahmad Shabery Cheek said that the cabinet had agreed that prepaid mobile users would get RM10 credit when they pay RM10 for mobile reloads, with GST charges imposed based on prepaid mobile usage.

The move was seen as more appropriate as the government would not impose tax before the service was used, he said.

Halim said, MCMC would also consider Ahmad Shabery’s call prompting telcos to offer affordable packages to specific target groups such as students.

Meanwhile, director-general of Customs Datuk Seri Khazali Ahmad said he would intensify monitoring of the GST conversion process to ensure smooth implementation based on usage of prepaid top-ups.

He said currently, the imposition of the GST on prepaid reload would continue according to the existing method until the system ‘buy RM10 get RM10′ is implemented.

New mobile election apps mean pressure’s on for local campaigns

NDP MP Laurin Liu spent time last summer canvassing her riding north of Montreal. While the NDP says its candidates and campaign workers will stick with clipboards on the campaign trail this fall, Conservatives and Liberals will use powerful new mobile apps to gather and process voter information.

New mobile database apps to gather voter information will give political parties a faster, deeper look at voter sentiment during campaigns — and the power for party headquarters to put much more pressure on local candidates, say political scientists.

Both the Conservative and Liberal parties have rolled out new mobile database apps for door-to-door canvassers to use on their smartphones and iPads.

CBC News reported exclusive details Friday about the Conservative’s new CIMS to Go app, also known as C2G, which connects to its Constituent Information Management System. The Liberals, meanwhile, have MiniVAN, linked to the party’s Liberalist database.

  • Tracking voters? There’s an app for that
  • Conservative campaign database fiasco costs party millions
  • Political parties operate outside Canada’s privacy laws

With canvassers logging voter information updates after every door, the two parties are able to monitor the groundwork operations of local campaigns in almost real-time. The Conservative app is GPS-enabled to allow for more powerful tracking of canvassers’ progress.

But according to Alex Marland, a political science professor at Memorial University, this monitoring will bring pressure to bear on local campaigns.

He said the parties are using the apps to push candidates and local campaigns for precision. There’s no room for error anymore because the data is being entered while out campaigning.

“The old style of ‘Let’s go round with a clipboard and a pen and knock at doors’ has kind of gone by the wayside. Now it’s ‘Let’s do everything with bar codes and scan things,'” he told CBC News.

“There’s a lot of pressure for people to be able to make sure they’re adding information to that database. So they’re constantly collecting it and they’re constantly acting on it.”

He calls it the overall “professionalization” of the local campaign.

At the moment, the NDP aren’t using an app. They are sticking to canvassing with clipboard and paper.

Apps ensure no houses, streets are skipped

Anna Esselment, a political science professor at the University of Waterloo, said the use of the mobile apps for smartphones and tablets give greater control to the national party headquarters.

CIMS to Go screenshot

The only online mention to C2G, the Conservatives new database app, is a landing web page that requires registration and authorization to enter. (CBC)

“All this information has to be uploaded to this main database and people who are running the campaign can actually keep very close tabs on what candidates are doing or what they’re not doing,” she told CBC News.

Esselment said not too long ago, party headquarters would rely on the word of campaign managers for how smoothly a local campaign was running. She says parties would send someone to periodically check in on the local groundwork.

Not the case in 2015.

Esselment says the apps allow the party make sure the canvassers aren’t skipping streets or missing houses. They can monitor and make sure a local campaign is doing what it says it is doing.

Georganne Burke, a former Conservative regional organizer and current campaigner, confirmed to CBC News her party’s app’s local administrators can track each canvasser live via GPS. The Liberals say MiniVAN does not have GPS location-tracking capabilities.

“They can tell if a candidate is canvassing at the rate at which they want that person to canvass,” she said.

“They have a better bird’s eye view of what’s going on, on the ground.”